Table 1.	Coordinates	and iso	otropic t	emperature	fac-
tors (Å	²) in FeSnF ₆ .	6H ₂ O (e.s.d.'s i	n parenthese	s)

	x	у	z	B
Fe	0	0	$\frac{1}{2}$	1.99 (2)*
Sn	0	0	Ō	1·67 (1)*
F	0.1460 (2)	0.1718 (2)	0.1126 (2)	4·2 (Ì)*
0	0.1840 (3)	0.1701 (3)	0.3813 (2)	4·8 (1)*
H(1)	0.310 (5)	0.223 (5)	0·411 (4)	6.0
H(2)	0.161 (6)	0.151 (5)	0-271 (4)	6.0

* Equivalent isotropic temperature factor, defined as $B_{eq} = [4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j$. (Hamilton, 1959).

Table	2. Selected	bond	lengths	(Å)	and	angles	(°)	in
	$FeSnF_{6.6}$	H ₂ O (e	.s.d.'s ir	i par	enth	eses)	.,	

$6 \times Fe - O$	2·116 (2)	O—H(2)	1·14 (4)
$6 \times Sn - F$	1·945 (2)	F…H(1)	1·61 (5)
O - H(1)	1·12 (5)	F…H(2)	1·63 (4)
O—H(1)…F	176 (4)	Fe-O-H(2)	114 (2)
O—H(2)…F	165 (4)	O-Fe-O	89·96 (8)
H(1) - O - H(2) Fe - O - H(1)	115 (4) 121 (2)	F—Sn—F	89.21 (8)

Unlike FeSiF₆.6H₂O, no extra reflection, signifying a lowering of symmetry from $R\overline{3}$, can be seen in FeSnF₆.6(H₂O).

The structure is built up from isolated $Fe(H_2O)_6$ and SnF_6 octahedra. The stability of the structure is ensured by hydrogen bonds: H atoms of water molecules point towards fluoride anions of neighbouring octahedra (Fig. 1 and Table 2). The mean Sn-Fdistance [1.945 (2) Å] is close to the sum of the ionic radii of Sn^{4+} (0.69 Å) and F^- (1.285 Å).

Fig. 1. [0001] projection of FeSnF₆.6H₂O. SnF₆ octahedra (at z = 0) are shaded; heights of the H atoms of the water molecules in the Fe(H₂O)₆ octahedra (at z = 1/6) are multiplied by 10³.

References

- CALAGE, Y., TORTEVOIS, P. & VARRET, F. (1990). J. Phys. Chem. Solids, 51, 911-913.
- CHAPPERT, J., JEHANNO, G. & VARRET, F. (1977). J. Phys. (Paris), 38, 411-418.
- CHEVRIER, G., HARDY, A. & JEHANNO, G. (1981). Acta Cryst. A37, 578-584.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HAMILTON, W. C. (1962). Acta Cryst. 15, 353-360.
- HASSEL, O. (1927). Z. Phys. Chem. 126, 118-126.
- JEHANNO, G. & VARRET, F. (1975). Acta Cryst. A31, 857-858.
- KODERA, E., TORII, A., OSAKI, K. & WATANABE, T. (1972). J. Phys. Soc. Jpn, 32, 863.
- PAULING, L. (1930). Z. Kristallogr. 72, 482.
- RAY, S., ZALKIN, A. & TEMPLETON, D. H. (1973). Acta Cryst. B28, 2741–2747.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SYOYAMA, S. & OSAKI, K. (1972). Acta Cryst. B28, 2616-2627.

Acta Cryst. (1990). C46, 2454-2455

Aluminium Trimagnesium Diplatinum

BY KLAUS-JÜRGEN RANGE,* FRANZ RAU AND ULRICH KLEMENT

Institut für Anorganische Chemie der Universität, Universitätsstr. 31, D-8400 Regensburg, Federal Republic of Germany

(Received 5 February 1990; accepted 24 May 1990)

Abstract. AlMg₃Pt₂, $M_r = 490 \cdot 10$, cubic, $Fd\bar{3}m$, $a = 11 \cdot 802$ (1) Å, $V = 1643 \cdot 9$ (4) Å³, Z = 16, $D_x = 7 \cdot 92$ Mg m⁻³, λ (Cu $K\alpha$) = 1 \cdot 5418 Å, $\mu = 133 \cdot 0$ mm⁻¹, F(000) = 3280, T = 296 K. The structure was refined to R = 0.017, wR = 0.025 for 78 absorption-corrected reflections. AlMg₃Pt₂ crystallizes as an ordered ternary variant of the NiTi₂ structure.

* To whom correspondence should be addressed.

0108-2701/90/122454-02\$03.00

Experimental. The alloy was synthesized by reaction of a stoichiometric mixture of the elements in a modified Belt-type high-pressure apparatus (Range & Leeb, 1975). This method avoids the vaporization losses of Al and Mg inevitably found in normalpressure experiments and allows for exact control of composition. From the reaction product obtained at 40 kbar (\equiv 4 GPa) and 1675 K (BN capsule, reaction time 30 min, subsequent slow cooling to 1275 K and quenching to ambient conditions) a crystal fragment

© 1990 International Union of Crystallography

Ν

(approx. dimensions $0.030 \times 0.040 \times 0.075$ mm) was isolated and used for data collection on an Enrafdiffractometer (Cu $K\alpha$, $\lambda =$ Nonius CAD-4 1.5418 Å, graphite monochromator in incident beam). An EDX analysis made on the same crystal after data collection showed Al, Mg, and Pt to be present in the approximate atomic ratio 1:3:2. The result of the structure analysis finally confirmed the composition AlMg₃Pt₂. Lattice parameters were refined from 2θ values of 25 reflections in the range $6.5 \le \theta \le 19.8^{\circ}$. Intensities were measured for $2 \le \theta$ $\leq 65^{\circ}$; ω -2 θ scan technique, scan width (0.7 + $0.14 \tan \theta$)°. Three standard reflections showed only small random fluctuations and indicated no loss of intensity throughout data collection. Merging of the 4270 collected intensities $(\sin \theta_{\text{max}} / \lambda = 0.59 \text{ Å}^{-1}; -13$ $\leq h \leq 13$, $-13 \leq k \leq 13$, $-13 \leq l \leq 13$) gave 88 unique reflections ($R_{int} = 0.088$), of which 78 with I $> 0.8\sigma(I)$ were considered as observed and used for all calculations (program system SDP3-1; Enraf-Nonius, 1988).

The structure was solved by routine direct methods, followed by successive difference-Fourier synthesis. In the least-squares refinement |F| magnitudes were used to refine an overall scale factor, positional parameters and isotropic temperature factors. Refinement of the occupation factors for Mg, Pt, and Al confirmed the stoichiometry AlMg₃Pt₂ within two standard deviations. Consequently, the s.o.f.'s were fixed at 100% before applying a numerical correction for the very serious absorption to the original 4270 data [program DIFABS (Walker & Stuart, 1983); correction factors minimum 0.21, maximum 1.00; R_{int} after merging of the corrected data 0.031] and performing the final anisotropic refinement (including an extinction parameter). Final $w = 4I/[\sigma^2(I) + 0.007I^2],$ R = 0.017, wR = 0.025. $(\Delta/\sigma)_{\rm max} < 0.001$ in final refinement cycle, 11 variables, $E = 1.41 (4) \times 10^{-6}$, S = 0.49. Maximum features in the final difference-Fourier synthesis +0.4, -0.3 e Å⁻³. Atomic scattering factors and f', f'' values as set by SDP program. Bond distances and angles were calculated using the program SADIAN (Baur & Wenninger, 1969). Final atomic coordinates and equivalent isotropic temperature factors are given in Table 1, derived bond distances in Table 2.*

The structure of AlMg₃Pt₂ is an ordered ternary variant of the NiTi₂ structure (Yurko, Barton & Parr, 1959). Ni, Ti(1) and Ti(2) are replaced by Pt, Al and Mg, respectively. The Pt—Al (2.599 Å) and

Table 1. Atomic coordinates and equivalent isotropic temperature factors ($Å^2 \times 10^4$)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	x	у	Z	$U_{\rm eq}$
Al	1 2	1 2	1	43 (8)
Mg	0.9288 (4)	1 8	1 8	42 (4)
Pt	0.71438 (3)	0.71438 (3)	0.71438 (3)	24.7 (5)

Table 2. Interatomic distances (Å)

Dt A 1	$2.500(1)(3 \times 1)$	Δ1—Pt	2.599 (1) (6 ×)
	$2.333 (1) (3 \times)$		$2.067(3)(6 \times 1)$
PiMg	2.714 (1) (2 ×)	AI—Mg	2.907 (3) (0 ^)
Pt—Mg	2·938 (3) (3 ×)	Mg—Pt	2·714 (1) (2 ×)
Pt—Pt	2·984 (1) (3 ×)	Mg—Pt	2·938 (3) (2 ×)
		Mg—Al	2·967 (3) (2 ×)

mean Pt-Mg (2.826 Å) distances agree well with those found in Pt₈Al₂₁ (Range & Christl, 1988) and Mg₂PtSi (Range, Rau & Klement, 1990).

Related literature. No structural details for ternary Al-Mg-Pt compounds could be found in the literature. A similar structure was derived from X-ray powder data for compounds like Nb₃Ni₂Si (Gladyshevskij, Kuz'ma & Kripyakevich, 1963). NiTi₂ (Duwez & Taylor, 1950) was claimed to be an oxide with composition Ni_2Ti_4O (Karlsson, 1951). Mueller & Knott (1963) concluded from powder neutron diffraction data that the structure can exist for the composition NiTi₂ as well as for Ni₂Ti₄O. In the present study no evidence for the existence of additional interstitial atoms in AlMg₃Pt₂ has been found.

The generous support given by the Fonds der Chemischen Industrie and the Degussa AG is gratefully acknowledged.

References

- BAUR, W. H. & WENNINGER, G. (1969). SADIAN. Program for calculation of atomic distances and angles in crystal structures. Univ. of Illinois, USA.
- DUWEZ, P. & TAYLOR, J. C. (1950). J. Met. 3, 1173-1176.
- Enraf-Nonius (1988). Structure Determination Package. Version 3.1. Enraf-Nonius, Delft, The Netherlands.
- GLADYSHEVSKIJ, E. I., KUZ'MA, J. B. & KRIPYAKEVICH, P. I. (1963). Zh. Strukt. Khim. 4, 372-379.
- KARLSSON, N. (1951). Nature (London), 168, 558.
- MUELLER, M. H. & KNOTT, H. W. (1963). Trans. Metall. Soc. AIME, 227, 674-678.
- RANGE, K.-J. & CHRISTL, E. G. (1988). J.Less-Common Met. 136, 277-285.
- RANGE, K.-J. & LEEB, R. (1975). Z. Naturforsch. Teil B, 30, 889-895.
- RANGE, K.-J., RAU, F. & KLEMENT, U. (1990). Acta Cryst. C46, 1092-1093.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 159-163.
- YURKO, G. A., BARTON, J. W. & PARR, J. C. (1959). Acta Cryst. 12, 901-912; see Structure Reports, 22, 888.

^{*} List of structure factors, anisotropic thermal parameters and bond angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53187 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.